If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2-11u-20=0
a = 2; b = -11; c = -20;
Δ = b2-4ac
Δ = -112-4·2·(-20)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{281}}{2*2}=\frac{11-\sqrt{281}}{4} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{281}}{2*2}=\frac{11+\sqrt{281}}{4} $
| 7r-8r=-3r+8 | | -3.6(7.1x+1.7)=126.792 | | -36=6(w-3)-8w | | 50=t*5 | | m+10=-20 | | 2(1/4)x=1(1/4)x-8 | | 2x+15+6x=1 | | 4t+7=4(t+4)−16 | | -88=-8+8(m-4) | | (6x-42)(x+28)=60 | | 2(1/4)x=1(1/4)-x | | -3=6x=6-5=6x-2 | | 3=v/19.2 | | -8(3s+6)=-34-9s | | (9*0)+16=h | | 6+9=6+n | | m=+8=17 | | 54.32=2.8b | | 3x5=7 | | 55/16=5/4k | | k(11-10)=87 | | -9(4x+4)+(37x-3)=0 | | -3(5x+5)=90 | | 3h+4-7h=-4(h+3) | | 21=n/8 | | k/8=27 | | (-z)-50/22=-2 | | 2.4p=13/10 | | 60w+45=285 | | 5=20+n | | r/4=19 | | n/0.3=39 |